Refine your search:     
Report No.
 - 
Search Results: Records 1-6 displayed on this page of 6
  • 1

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

Journal Articles

Selective adsorption of Pd(II) over Ag(I) in nitric acid solutions using nitrogen-donor-type adsorbents

Suzuki, Tomoya*; Otsubo, Ukyo*; Ogata, Takeshi*; Shiwaku, Hideaki; Kobayashi, Toru; Yaita, Tsuyoshi; Matsuoka, Mitsuaki*; Murayama, Norihiro*; Narita, Hirokazu*

Separation and Purification Technology, 308, p.122943_1 - 122943_7, 2023/03

 Times Cited Count:2 Percentile:24.43(Engineering, Chemical)

HNO$$_{3}$$ leaching is used in recycling Pd metal from spent products that primarily contain Ag, and most Pd residues are separated from solutions containing Ag(I). However, a small amount of Pd(II) often remains in these Ag(I) solutions. Therefore, the separation of Pd(II) and Ag(I) in HNO$$_{3}$$ solutions is essential to promote efficient Pd recycling. In this study, the separation of Pd(II) and Ag(I) in HNO$$_{3}$$ solutions was investigated using four N-donor-type adsorbents functionalized with amine (R-Amine), iminodiacetic acid (R-IDA), pyridine (R-Py), or bis-picolylamine (R-BPA). R-Amine, R-IDA, and R-Py selectively adsorbed Pd(II) over Ag(I), Cu(II), Ni(II), and Fe(III) from HNO$$_{3}$$ solutions (0.3-7 M), but R-Amine exhibited a lower Pd adsorption efficiency. In contrast, $$>$$90% of Pd(II), Ag(I), and Cu(II) were adsorbed by R-BPA over the entire range of HNO$$_{3}$$ concentrations. Structural analyses of the adsorbed metal ions using Fourier transform infrared spectroscopy and extended X-ray absorption fine structure spectroscopy revealed the separation mechanisms of the N-donor-type adsorbents. Pd(II) adsorption on R-IDA, R-Py, and R-BPA occurred via Pd(II) coordination of the functional groups (iminodiacetic acid, pyridine, and bis-picolylamine, respectively), whereas that on R-Amine occurred via anion exchange of NO$$_{3}$$$$^{-}$$ with [Pd(NO$$_{3}$$)$$_{4}$$]$$^{2-}$$. The coordinative adsorption mechanisms resulted in the higher Pd(II) adsorption behaviors of R-IDA, R-Py, and R-BPA. HCl (5.0 M) and thiourea (0.1 M) eluents desorbed 83% of Pd(II) from R-IDA and 95% from R-Py, respectively. R-Py was the most effective Pd(II) adsorbent based on adsorption selectivity and desorption efficiency.

Journal Articles

Insights into machine-learning modeling for Cr(VI) removal from contaminated water using nano-nickel hydroxide

Maamoun, I.; Rushdi, M.*; Falyouna, O.*; Eljamal, R.*; Eljamal, O.*

Separation and Purification Technology, 308, p.122863_1 - 122863_16, 2023/03

 Times Cited Count:3 Percentile:34.99(Engineering, Chemical)

Journal Articles

Effective extraction of Pt(IV) as [PtCl$$_{6}$$]$$^{2-}$$ from hydrochloric acid using a simple urea extractant

Ueda, Yuki; Morisada, Shintaro*; Kawakita, Hidetaka*; Wenzel, M.*; Weigand, J. J.*; Oto, Keisuke*

Separation and Purification Technology, 277, p.119456_1 - 119456_8, 2021/12

 Times Cited Count:5 Percentile:30.31(Engineering, Chemical)

no abstracts in English

Journal Articles

Chromium(VI) adsorption-reduction using a fibrous amidoxime-grafted adsorbent

Hayashi, Natsuki*; Matsumura, Daiju; Hoshina, Hiroyuki*; Ueki, Yuji*; Tsuji, Takuya; Chen, J.*; Seko, Noriaki*

Separation and Purification Technology, 277, p.119536_1 - 119536_8, 2021/12

 Times Cited Count:15 Percentile:62.75(Engineering, Chemical)

Journal Articles

Separation of palladium by solvent extraction with methylamino-bis-$$N,N$$-dioctylacetamide and direct electrodeposition from loaded organic phase

Matsumiya, Masahiko*; Song, Y.*; Tsuchida, Yusuke*; Sasaki, Yuji

Separation and Purification Technology, 234, p.115841_1 - 115841_8, 2020/03

 Times Cited Count:17 Percentile:62.19(Engineering, Chemical)

The development of solvent extraction and direct electrodeposition processes is an important task to reduce the volume of secondary wastes. In this study, the extraction of Pd(II) from hydrochloric/chloride media using methylimino-bis-$$N,N$$-dioctylacetamide (MIDOA) in three diluents (acetophenone; AP, 1,2-dichloroethane; DCE, or 1-octanol; OC) and the electrochemical behavior of the extracted Pd(II) complex in the MIDOA/AP bath was investigated. Pd(II) was found to be reduced to Pd(0) metal via a two-electron transfer between -2.38 V and -3.40 V. The potentiostatic electrodeposition of the extracted Pd(II) complex enabled us to recover the blackish electrodeposits, which were identified as Pd metal.

Journal Articles

Selective extraction of Pt(IV) over Fe(III) from HCl with an amide-containing tertiary amine compound

Maeda, Motoki*; Narita, Hirokazu*; Tokoro, Chiharu*; Tanaka, Mikiya*; Motokawa, Ryuhei; Shiwaku, Hideaki; Yaita, Tsuyoshi

Separation and Purification Technology, 177, p.176 - 181, 2017/04

 Times Cited Count:22 Percentile:58.79(Engineering, Chemical)

6 (Records 1-6 displayed on this page)
  • 1